Transferring ESRI Shapefile Data to LegendBurster and Working with LegendBurster Queries:

A Case Study using Mineral Deposits Data From Far East Russia, Alaska and the Canadian Cordillera¹

GeoReference Online Limited

October, 2002

Abstract

This document explains how data can be transferred into a LegendBurster project from a conventional ESRI shapefile, and how that data may then be queried.

Examples illustrate the following special features of LegendBurster:

Tools for analyzing and reporting on the semantic structure of attributes associated with shapefiles;

The ability to work with hierarchically structured attribute values;

The ability to work with lists of attribute values;

The ability to display, as well as perfect matches, close and intermediate matches to queries.

¹ US Geological Survey Open File Report 98-136 (1998)

Abstract	1
INTRODUCTION	3
LEGENDBURSTER WORKFLOW	3
ANALYSING SHAPEFILE ATTRIBUTES, WORDLIST PREPARATION AND ONTOLOGY	
CREATION	5
DESCRIBING MAPOBJECTS WITH SEMANTIC NETS	6
QUERYING THE SEMANTIC NETS	9
Query Example 1:	10
Query Example 2:	11
Query Example 3:	12
Query Example 4:	13
Query Example 5:	14
Query Example 6:	15
Query Example 7:	16
Query Example 8:	17
Appendix 1: "COMMODITIE" WordList	19
Appendix 2: "DEPOSIT_TY" WordList	20
Appendix 3: Hierarchical Deposit-Type Classification System derived from "DEPOSIT_TY"	21
Appendix 4: Part of the (Hierarchical) USGS Classification of Mineral Deposit Types	22
Appendix 5: Definitions of "Ontology"	23

INTRODUCTION

In 1998 the US Geological Survey published² an important collection of maps on compact disk which related together the mineral deposits, metallogenic belts and structural terranes of the Russian Far East, Alaska and the Canadian Cordillera.

There are a number of aspects to this data set that make it a good candidate for transfer into a LegendBurster project - in particular its value to minerals exploration companies which need to understand the factors controlling the distribution of mineral deposits. Well-focused querying of the data base can provide important insights as to where exploration efforts should be directed.

Other reasons that make it an informative case study are

- (a) the intrinsically hierarchical structure to some of the data it presents, and
- (b) the "ranked-list" structure to other sections of its data.

Neither of these kinds of data are easy to query when stored in conventional relational database tables.

Storing the same data in semantic nets, however, allows for much more effective querying. In the LegendBurster environment, it also makes possible the display of different **degrees of matching** in the objects queried - an invaluable aid during data interpretation.

Most queries submitted to a conventional relational database return only the perfect matches to the query, making it difficult to represent, on the same map, the "near misses" that often exist, and are important to the final interpretation.

LEGENDBURSTER WORKFLOW

The flow of work during a LegendBurster project is shown graphically in Figure 1, and described in the paragraphs below:

² US Geological Survey Open File Report 98-136 (1998)

Figure 1: LegendBurster Workflow

- (1) A detailed study is made of the structure of the data within each field of the table holding the shapefile attributes. Specific attention is paid:
 - a. to recognizing hierarchical structures in terminology used, and
 - b. to recognizing multi-valued attributes, and whether the multiple values are stored together in one field, or stored one-value-per-field.
- (2) Using LegendBurster's tools for creating word lists from shapefile attribute tables, word lists are created for the map's attributes of interest. These are attributes which will usefully be used in queries, or which should appear together with query results, even though they may not be used as part of any query. Mineral deposit names, for example, very seldom form part of a query, but are essential in the display and reporting of query results.
- (3) The word lists are used to create an ontology³ for describing the features in the map. They may be supplemented by any related terminologies which may be imported into the project, either from another LegendBurster project, or from any suitably-formatted list of terms.

³ "An ontology defines a common vocabulary for researchers who need to share information in a domain. It includes machine-interpretable definitions of basic concepts in the domain, and relations among them." (Noy and McGuiness (2001)). See Appendix 5 of this document for further explanation.

It is at this time that any hierarchical structure inherent to the data is given expression, which will in turn be utilized during querying of the data set.

(4) Each feature on the map (mapObject) is then described with its own semantic net, utilizing the terminology and semantic structures laid out in the ontology.

This is when multi-valued attributes are stored in a manner that allows them to be more precisely queried than is possible in most relational databases.

- (5) Queries are then constructed using terminology and tools very similar to those used for the mapObject descriptions. For queries, this terminology includes words stating whether an attribute value should *always, usually, sometimes, rarely* or *never* be in the best matches to the query.
- (6) Queries are then processed individually, or in batches.

Objects that exactly or closely match the query receive high scores, and objects without any matching attributes receive a low score. Intermediate matches receive intermediate scores. The scores for each query are stored in the project's shapefile for evaluation.

(7) Query results (scores) are then displayed in LegendBurster's Results Viewer, or in ArcView, ArcExplorer or ArcGIS 8. LegendBurster's Results Viewer has been optimally designed for investigating the "non-perfect" query scores - an essential task for the serious data analyst.

In the following pages, we will explain how the North Pacific Margin mineral deposits data referred to above was taken through these steps.

ANALYSING SHAPEFILE ATTRIBUTES, WORDLIST PREPARATION AND ONTOLOGY CREATION

The USGS Open-File Report 98-136 CD includes an ESRI shapefile called LODEDEP which holds the locational and attribute information for the deposits of the study. This shapefile is also part of a LegendBurster project called "TestLodeDep1" which may be downloaded from the LegendBurster section of the <u>www.georeferenceonline.com</u> web site. The TestLodeDep1 project includes all the semantic net data and queries which are described in this report.

Field Name	Description	Example
		Content
COMMODITIE	Deposit commodity(s), "listed in order of decreasing	"Ag, Au, Cu,
COMMODITE	abundance or value".	Pb, W, Zn"
DEPOSIT_TY	"The type of lode deposit is an interpretation that was made by examining the summary of the deposit and then classifying the deposit using the deposit models previously described." - Quoted from text accompanying shapefile.)	"porphyry cu- mo and cu-au skarn"

The following two fields in the LODEDEP shapefile are of particular interest for this study :

The COMMODITIE field holds between one and eight commodities, which were quickly compiled into a list of unique values by LegendBurster's WordList tool (see Appendix 1). That list was then corrected for synonyms and invisible control characters present with some of the "cu" and "ag" values, and transferred to the Ontology Editor as permissible values for the attribute "Commodity". No hierarchical structuring was appropriate for this collection of values.

The DEPOSIT_TY field was also quickly compiled into a list of unique values using LegendBurster's WordList tool, and yielded 259 different values for deposit type, as shown in Appendix 2. It was apparent that structuring these values into a hierarchical classification system would enhance the value of the data set by allowing an examiner to query on either broad or narrow classes of deposit.

Two actions were therefore carried out:

- (a) For demonstration purposes, the 259 deposit types were consolidated down to 43 classes, and entered manually into the project ontology. This was achieved primarily by dropping the commodity qualifiers, which are available anyway in the commodity field. Hierarchical structure was added to some areas of the new classification system by a drag-and-drop operation in LegendBurster's Ontology Editor a procedure that took only a few minutes, but greatly enhanced the amenability of the data set to useful querying. The final classification system is shown in Appendix 3. (A serious mineral deposits researcher might generate a better, more complex hierarchical classification system from the original 259 deposit types in the shapefile. This was not done for reasons set out in (b) below.)
- (b) Being aware that the USGS had published a comprehensive classification of mineral deposits of the world (Cox and Singer (1985)) which was available in LegendBurster format, the USGS classification was imported into the project's ontology as the preferred classification system (Appendix 4).

The project was now ready for the creation of semantic net descriptions of each mineral deposit.

DESCRIBING MAPOBJECTS WITH SEMANTIC NETS

The "Add Attribute to All ..." procedure in LegendBurster was used to semi-automatically transfer the values in the COMMODITIE field of the shapefile into individual nodes of semantic net descriptions for each of the deposits in the database. (All LegendBurster procedures are fully explained in the system documentation integrated into LegendBurster, and accessible as context-sensitive "Help" screens.)

A new attribute called "RankNumeric" was then created in the project's ontology, and linked to the "Commodity" attribute, allowing each commodity to be given its rank, as determined from its position in the list of commodities. The "Add Attribute to All …" procedure was also used to semi-automatically add these values to the semantic nets.

The same procedure was used to qualify ("describe") each deposit with two deposit-type attributes:

- (a) "DepositClassOrig" The simplified hierarchical classification developed for demonstration purposes.
- (b) "DepositTypeUSGS" The closest USGS deposit-type classification of the deposit, based on the author's interpretation of the DEPOSIT_TY value recorded in the shapefile for each deposit.

This allows the collection of mineral deposits to be queried using either the demonstration classification, or the internationally respected USGS classification.

As a next step, because the name of the deposit needs to be seen in the semantic net describing it, the deposit name (shapefile field: DEPOSIT_NA) was automatically transferred into all the nets using the "Direct ADD" procedure, and the same procedure was used to transfer the original deposit-type values into the semantic nets for reference purposes.

An example of one of the semantic nets at this stage of description is shown below:

In 2001, the USGS published a table summarizing the ages of the metallogenic belts in the study region, the mineral deposit types each belt hosted, and the tectonic environment of each belt (USGS Open File Report 01- 261, Version 1).

Using a relational join based on the name of the metallogenic belt, this data was combined with the data discussed above, and, using the techniques discussed above, transferred to the LegendBurster project as attributes with the following names:

Metallogenic_Belt:	An attribute of the deposit (ie: of the mapObject in the above diagram).
TectonicEnvironment:	An attribute of the metallogenic belt: The tectonic environment in
	which the belt formed.
Duration:	An attribute of the metallogenic belt: The duration, in units of
	geological time, over which the belt was formed.
BeltDepositTypes:	An attribute of the metallogenic belt: The deposit types found within the belt.

This process was identical to the process which would be followed for a spatial join between points and any polygons within which they fall.

A diagram of the semantic net describing mapObject 217 after the additional attributes were added is shown below.

This additional data provided material with which to illustrate multi-level querying of semantic nets (Example 8 at the end of this document), as well as a data set illustrative of the challenges of dealing with periods of geological time which span more than one pre-defined time interval (to be discussed under separate cover).

QUERYING THE SEMANTIC NETS

LegendBurster has a unique approach to queries, whereby a query is considered to be a model of what is being sought. The model is specified by declaring how frequently it is expected to have certain relevant attribute values. The frequency values *always, usually, sometimes, rarely* and *never* are used for this purpose. The following two examples compare the natural language phrasing, SQL-type phrasing , and LegendBurster phrasing of the same query:

Natural Language:	Find all deposits with zinc as a commodity.
SQL-Type:	Find all deposits with "commodity" = "zinc"
LegendBurster:	The deposits I am looking for will always have zinc as a commodity

As illustrated in Example 1 on page ___, the LegendBurster results are able to distinguish between deposits for which we have no information about copper, and deposits which are declared not to contain copper.

Natural Language:	Find all massive sulphide deposits in metallogenic belts which fall in continental
	terranes.
SQL-Type:	Find all deposits with "commodity" = "copper"
LegendBurster:	The deposits I am looking for will always be massive sulphide and will always
	come from a metallogenic belt which always falls in a continental terrane.

As illustrated in Example 8 on page ___, the LegendBurster query identifies the deposits being sought, and also shows where massive sulphide deposits occur outside continental terranes, along with deposits which are not massive sulphide, but occur in continental terranes.

When working with lists of attribute values, the querying power of these frequency values can be enhanced in combination with the <others> value to represent the attribute values which have not been stated.

Thus, a search for all deposits containing commodities "Zn" and "Cu" would appear as shown in Example 5 below, while a search for all deposits containing only "Zn" and "Cu" would appear as shown in Example 6.

Query Example 1:

Show all deposits with zinc as a commodity:

LegendBurster Query:

The simplicity of this query results in only two scores being returned: 10000 for those deposits which have "zn" as a commodity, and 0 for those for which it is not stated whether "zn" is absent or present. Any deposit for which the absence of "zn" had been explicitly stated would have received a score of -10000.

If the <silence implies absence> assumption had be selected, then all deposits without "zn" would have been given a score of -10000.

The Bottom Threshold has been set to 0 to enhance the difference between map symbols representing 10000 and symbols representing 0.

[Note that scores have not been normalized to the 0 - 100 range.]

Query Example 2:

Show all deposits with zinc as the top-ranked commodity.

LegendBurster Query:

012ZnHi	query	QC=[D] Deposits with Zn as the Rank 1 commodity
🖻 🔆 Commodity - zn	always	
RankNumeric - 1	always	

The maximum score possible is 20000, being 10000 for "zn" plus "10000" for a rank of 1. The estimated minimum is -10000 for instances in which zinc is declared to be absent.

The Bottom Threshold has been manually set to 0 to enhance the difference between map symbols representing 20000 and symbols representing 0. The system's default setting for the Bottom Threshold was -4000 (being the -10000 minimum, plus 6000 - the bin range required for five bins between -10000 and +20000).

Query Example 3:

Show all deposits with zinc as the top-ranked commodity, without any other commodities being present ("silence implies absence" implementation).

LegendBurster Query:

Ð.	n 013ZnHiA	query	QC=[-SD] Deposits with Zn as the Rank 1 commodity + Silence implies Absence
	🖻 🎇 Commodity - zn	always	
	🗌 🎽 RankNumeric - 1	always	

The maximum score possible is 20000, being 10000 for "zn" and "10000" for a rank of 1. The estimated minimum is -80000 for instances in which zinc is declared to be absent and seven other commodities are present in the instance (the maximum number of listed commodities in any one instance). The consideration of these "extra" commodities is a result of the "Silence implies Absence" Query Condition which has been set. The same scoring could have been achieved by adding the feature *Commodity <other values> "never*". (Scoring methodology is explained in detail in the LegendBurster system documentation, and on the GeoReference Online Ltd web site.)

The Bottom Threshold has been manually set to -30000 to enhance the difference between scores in the range 20000 to -30000. The system's default setting for the Bottom Threshold was -60000 (being the -80000 minimum, plus 20000 - the bin range required for five bins between -80000 and +20000).

It is clear that the Query Conditions set for this query are not ideal, as it is returning a lot of information about additional commodities in mineral deposits in a context where this is not required. The situation is clarified by adding to the query the information that "other commodities are possible (acceptable)", as illustrated in the next example.

Query Example 4:

Show all deposits with zinc as the top-ranked commodity, not caring whether other commodities are present ("silence implies absence" implementation together with *<other values>* "*sometimes*").

LegendBurster Query:

Ē	ᆲ 013ZnHi	query	QC=[-SD] Deposits with Zn as the Rank 1 commodity + Silence implies absence. Others allowed.
	- 🔆 Commodity - <other values=""></other>	sometimes	
	🖻 🎉 Commodity - zn	always	
	🖳 🎢 RankNumeric - 1	always	

The maximum score possible is 20000, being 10000 for "zn" plus "10000" for a rank of 1.

The feature *Commodity <other values> "sometimes"* has been added to the query, which eliminates the need to accumulate penalties for commodities in any mineral deposit which are additional to zinc.

Hence the estimated minimum is -10000 for instances in which zinc is declared to be absent.

The Bottom Threshold has been manually set to 0 to enhance the difference between scores in the range 20000 to 0.

The results are essentially the same as those in Example 2. (However, if any attributes other than commodities are added to the query, "Silence implies Absence" will apply to them as illustrated in Example 3 (unless they, too, are "neutralized" with the *<other values> "sometimes"* feature).

Query Example 5:

Show all deposits with zinc and copper as commodities.

LegendBurster Query:

.	020ZnCu	query	QC=[D] Deposits with Zn and Cu as commodities
	- 🎉 Commodity - cu	always	
	🦾 🔆 Commodity - zn	always	

The maximum score possible is 20000, being 10000 for "zn" plus "10000" for "cu". The estimated minimum is -20000 for instances in which both zinc and copper are declared to be absent.

The Bottom Threshold has been manually set to 0 to enhance the difference between scores in the range 20000 to 0. The system's default setting for the Bottom Threshold was -12000 (being the - 20000 minimum, plus 8000 - the bin range required for five bins between -20000 and +20000).

The distribution of mineral deposits containing both copper and zinc is clear.

However, the distribution of copper and zinc existing independently of each other is also readily apparent in the map, and would not be shown as the result of any SQL command. A purpose-specific program would need to be written to generate a map similar to the one shown above.

Query Example 6:

Show all deposits with zinc and copper as commodities without any accompanying commodities.

LegendBurster Query:

∃ 🔁 030ZnCuX	query	QC=[D] Deposits with Zn and Cu and no other commodities listed.
Commodity - <other values=""></other>	never	
- 🔆 Commodity - cu	always	
🦾 🔆 Commodity - zn	always	

The maximum score possible is 20000, being 10000 for "zn" plus "10000" for "cu".

The actual minimum is -60200. This case is the lowest score actually recorded for the data set and is used because it is lower than the estimated minimum of -20000. The latter is estimated from summing penalties of -10000 each for deposits where both copper and zinc are declared to be absent.

The Bottom Threshold has been manually set to 0 to enhance the difference between scores in the range 20000 to 0.

The distribution of mineral deposits containing both copper and zinc <u>without any other commodities</u> is clear.

However, the distribution of copper and zinc <u>existing on their own</u> is also readily apparent in the map, and would not be shown as the result of any SQL command. A purpose-specific program would need to be written to generate a map similar to the one shown above.

Query Example 7:

Show all deposits with zinc and copper as commodities ranking third in importance, or better.

LegendBurster Query:

Ē	🔁 040ZnCuT	query	QC=[D] Deposits with Zn and Cu both above (ie: better than) rank 4.
	🖨 🔆 Commodity - cu	always	
	RankNumeric - <4	always	
	🖻 🔆 Commodity - zn	always	
	🖳 🎢 RankNumeric - <4	always	

The maximum score possible is 40000, being 10000 for "zn" plus "10000" for "cu", plus 10000 for each when they are ranked 3rd or better. The estimated minimum is -20000 for instances in which both zinc and copper are declared to be absent.

The Bottom Threshold has been manually set to 500 to enhance the difference between scores in the range 20000 to 0, in particular to ensure that scores of 40000 and 30000 fall in different bins.

Scores of 40000 are returned for deposits that satisfy all search criteria. Scores of 30000 are returned for deposits which have both required commodities, one of which is ranked below a level of 3.

The distribution of perfect matches to the query, and "close misses" is clear on the map, and would not easily be obtained from normal SQL queries.

Query Example 8:

Show all massive sulphide deposits existing in a continental margin setting.

LegendBurster Query:

This is an important example because it illustrates the essential role hierarchical classification systems can play in returning correct results to a query. As illustrated overleaf, a number of the perfect matches to the query are recognized only by referring to the classification hierarchies.

The maximum score possible is 20000, being 10000 for "massive sulphide" plus "10000" for "continental margin". The estimated minimum is -10000 for instances in which massive sulphide is declared to be absent.

Since "metallogenic belt" may assume any value, it will never generate a penalty. And since estimated minimum scores do not need to take into account information below the first level in the query, no further penalties need to be taken into account.

The results display clearly the few massive sulphide deposits which occur in continental margin terranes (scores of 20000).

They also show massive sulphides in continental margins (scores of 10000), and, with different symbols, continental margin deposits which are not massive sulphides (scores of 9900; being 10000 for matching continental margin, and a penalty of -100 for not matching massive sulphide).

Using LegendBurster's comparison facility, it is possible to compare the query's features to those of any of the map's objects.

050VMSP: Attribute	050VMSP's	050V	: Attribute	's Value	: Pres	Match Type
⊞ ₩			Commodity	mo	present	
₽₩			Commodity	cu	present	
DepositClassOrig	massive sulphide	always	DepositClassOrig	massive sulphide kuroko	present	exactAKO
00000000000000000000000000000000000000			DepositClassUSGS	Kuroko massive sulphide	present	
			DepositName	Red River	present	
- 68			DepositType	Kuroko massive sulfide	present	
🖻 🕖 Metallogenic_Belt	<any value=""></any>	always	Metallogenic_Belt	tracy	present	exact
			BeltDepositTypes	Kuroko massive sulfide	present	
			Duration	late devonian	present	
	continental margin	always	TectonicEnvironment	continental-margin arc	present	exactAKO

Shown below is a comparison of the current query with a matching mineral deposit.

The comparison shows, in the "Match Type" column, that both matching attribute matches are "exactAKO" matches. This means that they have "a kind of (AKO)" relationships to the values they match in the query.

Without the ability to refer to the classification hierarchies, which is not present in most GIS systems, the correct results to this query would not have been achievable.

Appendix 1: "COMMODITIE" WordList

All Words in WordList: <u>COMMODITIE</u>

ID#	Word	Status	Related Word	Comment
0	ag	keep	-1	
1	ag	ignore	-1	Hidden control character
2	anhydrite	keep	-1	
3	as	keep	-1	
4	asbestos	keep	-1	
5	au	keep	-1	
6	au,ag	ignore	-1	
7	b	keep	-1	
8	ba	keep	-1	
9	barite	keep	-1	
10	bi	keep	-1	
11	caf2	synonym	21	
12	cd	keep	-1	
13	со	keep	-1	
14	cr	keep	-1	
15	cu	keep	-1	
16	cu	ignore	-1	Hidden control character
17	f	keep	-1	
18	fe	keep	-1	Is this only oxide iron? (See FeS and FeS2)
19	fes	keep	-1	See comment on Fe
20	fes2	keep	-1	See comment on Fe
21	fluorite	prefsynonym	21	
22	ge	keep	-1	
23	gems	keep	-1	
24	gypsum	keep	-1	
25	hg	keep	-1	
26	jade	keep	-1	
27	li	keep	-1	
28	magnesite	keep	-1	
29	mg	keep	-1	
30	mn	keep	-1	
31	mo	keep	-1	
32	nb	keep	-1	
33	ni	keep	-1	
34	р	keep	-1	
35	pb	keep	-1	
36	pd	keep	-1	
37	pge	keep	-1	

ID#	Word	Status	Related Word	Comment
38	phosphate	keep	-1	
39	pt	keep	-1	
40	ree	keep	-1	
41	S	keep	-1	Often listed with FeS and FES2. Clarify meaning.
42	salt	keep	-1	
43	sb	keep	-1	
44	se	keep	-1	
45	sn	keep	-1	
46	sr	keep	-1	
47	ta	keep	-1	
48	talc	keep	-1	
49	te	keep	-1	
50	th	keep	-1	
51	ti	keep	-1	
52	u	keep	-1	
53	v	keep	-1	
54	W	keep	-1	
55	W	keep	-1	
56	zn	keep	-1	
57	zr	keep	-1	

Appendix 2: "DEPOSIT_TY" WordList

Original WordList:

DEPOSIT TY

ID# Word

- 0 ag epithermal vein
- 1 ag polymetallic vein
- 2 ag polymetallic vein and replacement
- ag-au polymetallic vein 3
- 4 ag-co arsenide vein and fepb-cu-ag-au skarn
- ag-pb-zn polymetallic vein 5
- 6 ag-pb-zn vein, polymetallic vein(?)
- anorthosite apatite ti-p 7
- as quartz vein 8
- au epithermal vein 9
- au polymetallic vein 10
- 11 au quartz and sb vein
- 12 au quartz vein
- 13 au quartz vein and ausulfide disseminated
- au quartz vein or polymetallic vein
- au skarn 15
- au sulfide disseminated 16
- 17 au-ag epithermal vein
- au-ag epithermal vein 18
- au-ag epithermal vein(?) 19
- 20 au-ag polymetallic vein
- 21 au-as polymetallic vein
- 22 au-co-as vein
- au-pb-zn epithermal vein 23
- au-pb-zn polymetallic vein 24
- 25 au-sb polymetallic vein
- 26 ba vein
- 27 ba vein and breccia
- 28 basaltic cu
- 29 basaltic cu and sedimenthosted cu
- bedded barite 30
- bedded barite, kuroko ba-31 zn-pb-cu massive sulfide besshi massive sulfide 32
- 33 besshi massive sulfide(?)
- boron skarn 34
- 35 carbonate-hosted hg

Thursday, September 12, 2002

- carbonate-hosted hg(?) 36
- 37 carbonate-hosted massive sulfide

- 38 carbonate-hosted zr (algoma type) 39 carbonatite-related ree carbonatite-related ree (ta, 40 nb)
- clastic sediment-hosted hg 41
- clastic sediment-hosted hg 42 or hot-spring hg(?) co skarn 43
- co-as vein 44
- 45 co-bi-as vein
- 46 cu massive sulfide
- cu skarn 47
- 48 cu vein
- 49 cu-ag quartz vein
- 50 cu-ag quartz vein(?)
- 51 cu-ag skarn
- 52 cu-au skarn
- 53 cu-fe skarn
- 54 cu-mo skarn
- cu-pb-zn polymetallic vein 55
- cu-pb-zn skarn 56
- 57 cu-zn skarn
- cu-zn-pb-ba vein 58
- cyprus massive sulfide 59
- 60 cyprus massive sulfide(?)
- disseminated au-sulfide 61
- 62 epithermal vein
- epithermal vein and 63 volcanic-hosted sb vein 64 f vein
- 65 fe (au, cu, w, sn) skarn
- fe (cu, pb, zn) skarn 66
- 67 fe skarn
- 68 fe-au skarn
- felsic plutonic ree 70
- 71 felsic plutonic u
- 72 felsic plutonic u-ree
- fe-pb-zn-sn skarn 69

Project Name: TestLodeDep1.lbp

- 73 fluorite greisen
- gabbroic cu 74
- 75 gabbroic cu-ni
- gabbroic ni-co 76

- gabbroic ni-cu 77
- 78 gabbroic ni-cu(?)
- 79 granitoid-related au
- granitoid-related au (ree) 80
- granitoid-related au-ag (cu) 81

113 pb-zn skarn

vein

116 pb-zn vein

115

119

123

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

114 pb-zn skarn and fluorite

117 pb-zn-(cu)-ag skarn

pb-zn-ag skarn

121 pb-zn-ag vein or skarn

pb-zn-cu-ag skarn

120 pb-zn-ag vein

124 podiform cr

vein

vein

porphyry

porphyry cu

porphyry cu(?)

porphyry cu-mo

porphyry cu(?)

quartz vein

vein

skarn

125 podiform cr(?)

podiform cr-ni

polymetallic vein

polymetallic vein

(metamorphosed)

polymetallic or epithermal

polymetallic sufide and au

polymetallic vein and au-

ag breccia pipe or cu-au

polymetallic vein and

polymetallic vein and

polymetallic vein and

polymetallic vein and

polymetallic vein or

polymetallic vein(?)

polymetallic vein(?), sn

polymetallic vein, au quartz

vein, sn skarn, cu-pb-zn

polymetallic vein, pb-zn

Page 1 of 2

and possibly sn skarn

granite, porphyry mo

142 polymetallic vein, au-

quartz vein

porphyry au

146 porphyry co-mo

porphyry au-cu

polymetallic vein or cu-ag

polymetallic vein or sb-au

kuroko massive sulfide

122 pb-zn-au-ag vein

pb-zn skarn and manto

118 pb-zn-ag skarn and manto

- 82 granitoid-related gold
- 83 hg quartz vein
- hg-ag epithermal vein(?) 84
- 85 hornblendite peridotite cu-ni
- 86 hot-spring hg
- ironstone 87
- kennecott cu 88
- kipushi cu-pb-zn 89
- korean zn massive sulfide 90
- 91 kuroko cu-pb-zn massive sulfide
- kuroko cu-zn massive 92 sulfide
- 93 kuroko cu-zn-ag massive sulfide(?)
- kuroko massive sulfide 94
- kuroko massive sulfide(?) 95
- 96 kuroko massive sulfide(?) or polymetallic gold vein
- kuroko pb-zn massive 97 sulfide
- 98 kuroko zn-cu massive sulfide
- 99 kuroko zn-cu-pb massive sulfide
- kuroko zn-pb-ag massive 100 sulfide and zn skarn
- kuroko zn-pb-cu massive 101 sulfide manto-replacement

deposit (polymetallic pn-

sedimentary exhalative zn-

102

104

107

108

109

110

111

zn, au)

pb(?)

105 mn-ag vein

103 metamorphic ree(?)

metamorphosed

106 mo greisen and vein

mo quartz vein

mo skarn

mo-cu skarn

paleoplacer u

pb polymetallic vein

112 pb-zn polymetallic vein

ID# Word

147	porphyry cu	187	sedimentary exhalative pl
148	porphyry cu and (or) polymetallic vein	188	zn(?) sedimentary exhalative zr
149	porphyry cu and cu skarn	189	sedimentary exhalative zr
150	polymetallic vein	190	sedimentary mn
151	porphyry cu and polymetallic vein	191	sedimentary phosphorite
152	porphyry cu(?)	192	sedimentary zn-pb and (o kuroko massive sulfide
153	porpnyry cu, polymetallic vein	179	sediment-hosted cu
154	porphyry cu-ag	180	sediment-hosted u
155	porphyry cu-au	193	serpentine-hosted asbest
156	porphyry cu-au (mo)	194	silica-carbonate hg
157	porphyry cu-au and cu-au	195	sn (b) magnesian skarn
158	porphyry cu-mo	196	sn greisen
159	porphyry cu-mo and cu-au	197	sn greisen and sn vein
100	skarn	198	sn greisen and vein
160	porpnyry cu-mo and polymetallic vein	199	sn greisen with ta and nb
161	porphyry cu-mo and(or)	200	sn greisen(?)
162	polymetallic vein(?) porphyry mo	201	sn greisen(?) and sn vein
163	porphyry mo-cu	202	sn polymetallic vein
164	porphyry mo-w, mo skarn	203	sn polymetallic vein and
165	porphyry sn	204	sn polymetallic vein and s
166	porphyry sn or sn greisen	205	silicate-sulfide vein
167	porphyry w-mo	205	sn quartz vein
168	porphyry-mo (w)	200	sn quartz vein and greise
169	rhyolite-hosted sn	207	sn quartz vein and greise
170	sb vein	200	greisen
171	sb-as vein	209	sn silicate tourmaline, sn silicate-sulfide vein
172	sb-au vein	210	sn silicate-sulfide and sn
173	sb-au vein (simple sb)	211	sn silicate-sulfide vein
174	sb-au vein or clastic	212	sn silicate-sulfide vein an
175	sb-au vein or polymetallic	212	sn greisen
176	vein(?)	215	sn polymetallic vein
177	sb-au-hg vein	214	sn skarn
178	sh-ha vein	215	sn-b skarn
181	sedimentary exhalative zn-	216	sn-polymetallic vein, sn silicate-sulfide vein
	cu-pb	217	sn-w greisen
182	sedimentary exhalative zn- pb	218	sn-w polymetallic vein and
183	sedimentary exhalative ba	219	greisen sn-w skarn, sn greisen,
184	sedimentary exhalative barite (pb-zn)		carbonate -replacement sn(?)
185	sedimentary exhalative ni-	220	southeast missouri ba-f
186	zn sedimentary exhalative ph-	221	southeast missouri pb-zn
	zn	222	southeast missouri pb-zn and sediment- hosted cu

sedimentary exhalative pb-	223
sedimentary exhalative zn-	224
sedimentary exhalative zn-	225
pb-barite	226
	227
sedimentary prosphorite	228
kuroko massive sulfide sediment-hosted cu	229 230
sediment-hosted u	231
serpentine-hosted asbestos	232
silica-carbonate hg	233
sn (b) magnesian skarn	234
sn greisen	235
sn greisen and sn vein	236
sn greisen and vein	237
sn greisen with ta and nb	238
sn greisen(?)	239
sn greisen(?) and sn vein	240
sn polymetallic vein	241
sn polymetallic vein and	242
sn polymetallic vein and sn	243
silicate-sulfide vein	244
sn quartz vein	245
sn quartz vein and greisen	246
sn quartz vein and sn	247
greisen	248
sh silicate tourmaline, sh silicate-sulfide vein	249
sn silicate-sulfide and sn	250
sn silicate-sulfide vein	251
sn silicate-sulfide vein and	252
sn greisen	253
sn polymetallic vein	254
sn skarn	255
sn-b skarn	256
sn-polymetallic vein, sn silicate-sulfide vein	257
sn-w greisen	258
sn-w polymetallic vein and	259
sn-w skarn, sn greisen,	
carbonate -replacement	
southeast missouri ba-f	
southeast missouri pb-zn	

southeast missouri zn-pbag stratabound fe stratabound fe-mn stratabound fe-p stratabound gypsum stratabound mg stratabound w strataform gypsum strataform magnesite stratbound gypsum stratform salt stratiform pb-zn sulfur-sulfide tin greisen and skarn volcanic-hosted hg volcanogenic fe volcanogenic mn w greisen(?) w polymetallic vein w skarn w skarn and greisen w vein and greisen w vein, sn (w)-quartz vein w-mo-sn vein and greisen w-sn greisen w-sn skarn zn-ag polymetallic vein zn-ag-au vein zn-pb skarn zn-pb skarn and manto zn-pb-ag skarn and manto zoned mafic-ultramafic zoned mafic-ultramafic crpge zoned mafic-ultramafic cuau-pge zoned mafic-ultramafic fe-ti zoned mafic-ultramafic fe-v zoned mafic-ultramafic ti

Appendix 3: Hierarchical Deposit-Type Classification System derived from "DEPOSIT_TY"

DepositClassOrig	DepositClassOrigCom
root	
anorthosite	
basaltic	
bedded	
breccia	
carbonate-hosted	
carbonatite-related	
disseminated	
felsic plutonic	including "granitoid-related"
gabbroic	
greisen	
hot-spring	
ironstone	
kennecott	
kipushi	
manto	including "manto replacement"
massive sulphide	
massive sulphide besshi	
massive sulphide cyprus	
massive sulphide kuroko	
metamorphic	
podiform	
porphyry	
replacement	
rhyolite-hosted	
sediment-hosted	
chemical sediment hosted	
clastic sediment-hosted	
paleoplacer	
sedimentary exhalative	
sedimentary phosphorite	
stratabound	
strataform	
serpentine-hosted asbestos	
silica-carbonate	
skarn	
southeast missouri	
ultramafic	including " "hornblendite peridotite"
vein	
vein epithermal	
vein quartz	
volcanic hosted	
volcanogenic	
zoned mafic-ultramafic	

Appendix 4: Part of the (Hierarchical) USGS Classification of Mineral Deposit Types

	DepositClass	JSGS
All_	I_Deposits	
	Igneous	
	Extrusive rocks	
	Felsic-mafic extrusive	ocks
	Marine	
	Algoma Fe	
	Homestake A	u
	Kuroko mass	ive sulphide
	Low-sulfide A	u-quartz vein
	Volcanogenic	Mn
	Volcanogenic	U
	Subaerial	
	Deposits in ol	der calcareous rocks
	Carbona	e-hosted Au-Ag
	Fluorspa	r deposits
	Deposits in ol	der clastic sedimentary rocks
	Almaden	Hg
	Hot-sprin	g Hg
	Silica-ca	bonate Hg
	Simple S	b
	Deposits mair	ly within volcanic rocks
	Comstoc	k epithermal vein
	Creede e	pithermal vein
	Epitherm	al Mn
	Epitherm	al quartz-alunite Au
	Hot-sprin	g Au-Ag
	Rhyolite-	hosted Sn
	Sado epi	thermal vein
	Sn polym	etallic veins
	Volcanic	hosted magnetite
	Volcanog	enic U
	Mafic extrusive rocks	
	Continental or rifte	d craton
	Basaltic Cu	
	Sediment-hos	ted Cu
	Marine, including of	phiolite-related
	Besshi massi	ve sulfide
	Blackbird Co-	Cu
	Cyprus massi	ve sulfide
	Komatiitic Ni-	Cu
	Volcanogenic	Mn
	Intrusive rocks	
	Alkaine and basic rock	6
	Alkaline intrusions	in stable areas
	Carbonatite	
	Alkaline	complexes
	Carbona	ite model
	Diamond	pipes
	Felsic intrusions	
	Mainly phanerocry	stalline textures
	Anorthosite in	trusions

Granitic intrusions
Other wall rocks
Homestake Au
Low-sulfide Au-guartz vein
Sn greisen
Sn veins
W veins
Wallrocks are calcareous
Deposits far from contact
Carbonate-hosted Au
Polymetallic replacement
Replacement Mn
Deposits near contact
Carbonate-hosted asbestos
Cu skarn
Fe skarn
Porphyry Cu, skarn-related
Zn-Pb skarn
Replacement Sn
Sn skarn
Wskarn
Peqmatitic
Be-Li pegmatites
Sn-Nh-Ta pegmatites
Porphyroaphanitic intrusions present
High-silica granites and rhvolites
Climax Mo
Fluorspar deposits
Other felsic and mafic rocks including alkalic
Porphyry Cu
Wallrocks are calcareous
Deposits far from contact
Deposits far from contact Carbonate-hosted Au
Deposits far from contact Carbonate-hosted Au Polymetallic replacement
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn Wallrocks are coeval volcanic rocks
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn Wallrocks are coeval volcanic rocks In calcalkalic or alkalic rocks
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn Wallrocks are coeval volcanic rocks In calcalkalic or alkalic rocks Epithermal Mn Porphyry Cu-Au
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn Wallrocks are coeval volcanic rocks In calcalkalic or alkalic rocks Epithermal Mn Porphyry Cu-Au
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn Wallrocks are coeval volcanic rocks In calcalkalic or alkalic rocks Epithermal Mn Porphyry Cu-Au In granitic rocks in felsic volcanics
Deposits far from contact Carbonate-hosted Au Polymetallic replacement Replacement Mn Deposits near contact Carbonate-hosted asbestos Cu skarn Fe skarn Porphyry Cu, skarn-related Zn-Pb skarn Replacement Sn Sn skarn W skarn Wallrocks are coeval volcanic rocks In calcalkalic or alkalic rocks Epithermal Mn Porphyry Cu-Au In granitic rocks in felsic volcanics Porphyry Sn Sn-polymetallic veins

Appendix 5: Definitions of "Ontology"

In Summary:

"An ontology defines a common vocabulary for researchers who need to share information in a domain. It includes machine-interpretable definitions of basic concepts in the domain, and relations among them."

From: "A Guide to Creating Your First Ontology" by Natalya F. Noy and Deborah L. McGuiness (Stanford University, Stanford, California) <<u>View PDF file on WWW></u>

In More Detail:

"An ontology is a formal explicit description of concepts or classes in a domain of discourse, properties of each class describing various features and attributes of the classes, and restrictions on property values. An ontology together with a set of individual instances of classes constitutes a knowledge base. In reality, there is a fine line between where the ontology ends and the knowledge base begins."

Also from: "A Guide to Creating Your First Ontology" by Natalya F. Noy and Deborah L. McGuiness (Stanford University, Stanford, California) <u><View PDF file on WWW></u>

More Detail Still:

"An important and fundamental prerequisite to using a Representation and Reasoning System (RRS - described in <u>Knowledge Bases</u>) is to decide how a task domain is to be described. This requires us to decide what kind of things the domain consists of, and how they are to be related in order to express task domain problems. A major impediment to addressing this task is that there is no comprehensive theory of how to appropriately conceive and express task domains.

Despite this fundamental problem, the need for the following "commitments" is recognised:

- The world can be described in terms of entities (things) and relationships among entities. An **ontology** is a commitment to (or a formal declaration of) what exists in any particular task domain. This assumption that the world can be described in terms of things is the same that is made in natural language and logic. This isn't a strong assumption, as entities can be anything nameable, whether concrete or abstract. For example, people, colours, emotions, numbers and times can all be considered as entities. What is a "thing" is a property of an observer as much as it is a property of the world. Different observers, or even the same observer with different goals, may divide the world up in different ways.
- For each task or domain, one needs to identify specific entities and relations that can be used to express what is true about the world under consideration. How one does so can profoundly affect one's ability to solve problems in that domain."

Abridged from the final part of Section 1.3 of "Computational Intelligence: A Logical Approach" by Poole, Mackworth and Goebel (Oxford University Press (1998)). The subsection is titled "Ontology and Conceptualisation".